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n-sided Surfaces: a Survey

Pierre Malraison

Abstract. The paper surveys techniques for filling in n-sided regions,
where n > 4. The two major classes of methods examined are: 1) to fill in
the hole with 4 and/or 3 sided patches, 2) to create a single surface. The
multi-patch approaches differ in terms of the degree of the patches and the
cross-patch continuity. The single surface approaches are either rational
surfaces (which can be expressed in terms of base points) or non-rational,
both cases having a number of variants.

§1. Introduction

The problem being considered is:

Given n curves C 1,..., Cn whose endpoints match, i.e (if we say
Co = Cn) the end of Ci- 1 is the start of Ci, fill in the hole bounded
by the Ci, possibly satisfying some additional boundary conditions.

For example, in blending, the Ci are the edges of faces, and the filling surface
or surfaces must be smooth across the edges.

I will be looking at the case n > 4. The problem with no boundary
conditions arises in the cover command in the ACIS [1] software libraries.
ACIS also supports vertex blends using Charrot [6].

This paper extends the survey Malraison [38]. Other surveys include:
Nasri [40], Cavaretta [4], Sederberg [57] and Dyn [9] for general overviews
of subdivision, Dyn [10] for a review of John Gregory's contributions to the
field, Varady [65] is a review of n-sided patches, Gregory [13] and Gregory [16]
are surveys on n-sided patches by Gregory and others, Varady [60] specific to
vertex blends and Vida [66] discusses blends in general with a section on n-
sided issues.

§2. Subdivision

Subdivision is a much broader topic than I can cover here. The basic pro-
cess is to generate a surface by starting with a polygonal approximation P0
and having a process which from Pi creates Pi+,. The n-sided problem arises
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in this context when the individual polygons formed by the subdivision process
are not 4-sided. Hermann [21] and Ball [2] use subdivision to explicitly fill
in n-sided holes, while Wang [69,68] uses a single patch method of Varady
[65,64] to fill in an n-sided hole arising in the course of subdivision. Levin
[31,32] applies a combined subdivision scheme to solve the n-sided problem
with cross-tangency constraints. Nasri [41-44] uses subdivision to provide
both a source of and solution for n-sided problems.

§3. Multiple Patches

One solution to the problem is to take the n-sided region and subdivide it once
into triangular or 4-sided regions, and then fill those with standard surface
types. The main difficulty with this approach is ensuring the internal smooth-
ness of the resulting network of patches. Peters [45] discusses the problems for
doing a CK join, Varardy [62] looks at curvature matching, and Hall [20,19]
looks at the situation when the pieces are Gregory patches. Some of the other
approaches are summarized in Table 1.

Boundary Degree Continuity Reference
Mesh points Bicubic C 1  [47]

Planes Biquintic C 1  [72]
Polygon Cubic C 1  [8,3]
Quartic Bicubic C1  [48-50]
Cubic Quartic G1  [52]
Cubic Quartic triangular C 1  [36,37]

Quintic Quintic GC 2  [74]
Quintic 2k 2 + 3k + 1 GCk [76]
Quintic Biquintic GC2 [17]

Tab. 1. Multiple patches.

Bangert [3], and Peters [48,49,50] are triangle-based spline methods. Pe-
ters [51] adds a hierarchical structure which supports interactive modeling.
Some other multi-patch approaches do not fit into the above table. Sone
[58,59] subdivides an n-sided hole into quadrilaterals and uses Gregory
patches. Hsu [24] uses a blend between two edges to fill in a triangular sub-
set of the n-sided hole, then continues to subdivide the remaining pieces so
that the entire hole is filled in with multiple blend surfaces. This approach is
different from the usual multiple patch approach as it may require multiple
subdivisions to arrive at regions suitable for blending. Varady [65,64] uses
multiple patches for setback blends.

§4. Single Patches

Filling in an n-sided hole with a single patch is an easier approach in a solid
modeling environment since only one face need be constructed. The issue
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here is unusual (i.e., non-rectangular) parametric domains and internal shape
control. Hall [20] discusses the control of Gregory patches [13].

For the case where the surface is rational ( i.e., f(u, v) = '")', Warren

[71] shows that several different methods are all variants of rational surfaces
with base points ( p(u, v) = q(u, v) = 0). Since base points are singularities,
they may occur either on the boundary of the domain or outside. S-patches
go from a polygon through an n-simplex : PL E-R 3 . Those variants are
summarized in Table 2.

Basepoints Variant Reference
Boundary

2n [64]
up to 8 sides [70]

manifold charts [12]
5,6 sides [54]

includes holes [29,30]
External

S-Patches: domain is n-simplex
original [35,34]

modifies B [33]
modifies L [25,26]

Gregory-like: Polygonal domain
pentagon [5]

arbitrary n [6]

Tab. 2. Single patch.

Gregory [15] starts with a larger problem: interpolating an arbitrary
mesh. The solution is to interpolate the "edges" by rational splines to create
polygonal curved regions, then extend the splines into strips, and blend the
strips into the interior using the same technique as Charrot [5].

The other principal method is to generate a rational surface using a
Bezier-like approach by constructing non-rectangular control nets. The
boundaries are considered as the edges of Bezier surface patches so higher
cross boundary smoothness can be obtained by having the internal control
net reflect the adjacent surface control net.

Sabin [53] uses quadratic functions to fill in three-sided and five-sided
patches. In Sabin [56] the same technique is applied to a 2-sided patch. Hosaka
[23] does the same thing using quadratics and cubics for three-sided, five-
sided and six-sided patches. Their solution is described in the general n-sided
setting. Zheng [73] extends those two approaches by using higher degrees for
higher numbers of sides.

Kar~iauskas [27,28] and Zube [77,78] provide a unifying approach similar
to Warren [71] for these rational cases by looking at toric varieties.
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§5. Other n-sided Things

Two papers address a problem which arises in a more global setting from a
classical result in topology.

Theorem. [39]. If M is a compact connected 2-manifold, M is a 2-sphere
with h handles and m cross caps.

This theorem implies M can be represented by a polygon with edges
identified: e.g. a torus is ABA- 1B- 1. Ferguson [11] applies this result to
model objects with a single surface. Wallner [67] applies the same idea to
orbifolds: surfaces defined as images of group actions. These techniques fall
into the scope of this paper insofar as the marked polygon defining the surface
is an n-sided object in parameter space.

§6. Conclusions

For single surface patches, Warren [71], Kariauskas [28], and Zube [78] show
that the approaches used so far are variations on two main themes. For multi-
patch and subdivision methods no such unifying concept has been presented,
although the basic notion of subdivision is arguably the unfiying theme of that
approach.
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